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• The requirement of high pressure CO2 for sequestration 
enables pressurized combustion as a tool to increase 
efficiency and reduce costs.

• Benefits of Pressurized Combustion
– Recover latent heat in flue gas                      improved efficiency & cost

– Latent heat recovery can be combine  reduced cost

with integrated pollution removal 

– Reduce gas volume  reduced equipment size

– Avoid air-ingress  reduced CO2 purification costs

– Fuel flexibility  reduced oxygen requiremen

– Controlled radiation heat transfer

Pressurized Oxy-Combustion
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a.  Cost and performance baseline for fossil energy plants volume 1: bituminous coal and 

natural gas to electricity.  DOE/NETL-2010/1397, rev. 2

b.  Advancing Oxycombustion Technology for Bituminous Coal Power Plants: An R&D 

Guide. DOE/NETL - 2010/1405

a b

ASPEN Plus Results – Plant Efficiency

Gopan A, et al. Applied Energy, 

125, 179-188 (2014)
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SOx and NOx Removal Mechanism
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Questions

• What is the optimum design for the DCC for pressurized oxy-
combustion?

• What is the expected removal efficiency at the proposed 
operating conditions for SPOC?

• What are the optimal DCC operating & inlet conditions?

o Inlet NOx/SOx ratio 

o pH

o Temperature

• What are the critical and rate limiting reactions?

• Is one column sufficient?
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Project Objectives

Mission: to develop an enabling technology for simultaneous 
recovery of latent heat and removal of SOx and NOx from flue gas 
during pressurized oxy-coal combustion, so as to eliminate 
conventional FGD and de-NOx processes and minimize the COE.
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Objectives:

• Develop a predictive model for reactor design & operation.

• Experimentally determine critical reactions and rates.

• Conduct parametric study to optimize process.

• Design, build, test prototype for 100 kW pressurized combustor.

• Estimate capital and operating costs of the DCC for a full-scale 
SPOC plant.



Technical Approach
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Technical Approach:

Mechanism and Kinetics
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Knowledge Gaps and Challenges: Reaction 
Mechanism & Kinetic Model

1. The earlier understanding of the chemistry (the so-called 
lead chamber process) has been shown to be insufficient 
but this chemistry is still often used to describe the 
process.

2. New chemical mechanisms have been proposed but 
these have been based on existing kinetic data developed 
under conditions different from this system.

3. A “rational” kinetic model is needed where 

• the level of complexity of the model is just sufficient to 
characterize the chemistry, and 

• the kinetic parameters in the mechanism are obtain by 
experiment.
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Building blocks of the Mechanism

1. N (nitrogen) -block

• Gas-phase oxidation of NO into nitrogen oxides 
NO2, N2O3 and N2O4

• Liquid-phase dissolution of nitrogen oxides; 
production of nitrous and nitric acids (HNO2, HNO3)

2. S (sulfur) -block

• Liquid-phase dissolution of SO2

3. S&N -block 

• Liquid-phase interaction between S- and N-
compounds. 

• Production of the sulfuric acid (H2SO4)
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Development of the Mechanism 

Mechanism reduction:

Based on the 33-step mechanism of Norman, et al., 
Intern. J. of Greenhouse Gas Control, V. 12, January 2013, pp.26-34., 

 A 10-step reduced mechanism has been constructed by 
Yablonsky and Temkin.
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NOx Reactions
Gas Phase

1. 2NO (g) + O2(g)2NO2 (g)
2. 2NO2(g) ↔N2O4(g)
3. NO(g) + NO2(g) →N2O3(g)

Gas + Liquid Phase
4. 2 NO2 (g) + H2O (g, aq)HNO2 (aq) + HNO3 (aq)
5. N2O4(g)+ H2O (g, aq)HNO2 (aq) + HNO3 (aq)
6. N2O3(g) + 2H2O (g, aq) 2 HNO2 (aq)
7. 3 HNO2 (aq)HNO3 (aq)+ 2 NO (g, aq)+ H2O (g, aq)

SOx Reactions
8. SO2 (g) + H2O (g, aq) = HSO3

- (aq) + H+ (aq)

SOx + NOx Reactions
9. HNO2 (aq) + HSO3

- (aq) + H+ (aq) → H2SO4 (aq)+ ½ N2O (g) + ½ H2O (aq)
10. 2 HNO2 (aq) + HSO3

- (aq) + H+ (aq) → 2NO (g) + H2SO4 (aq) + H2O (aq)

Rational Mechanism
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Kinetic Modeling: Goals

1. Justify or eliminate (add) steps in the mechanism 
based on gas- and liquid-phase experimental data 
conducted in the domain of the anticipated 
operational conditions.

2. Estimate contributions of the different routes and 
accurately determine reaction parameters for the key 
reactions.

3. Obtain estimates of optimal parameters (initial 
composition and pH, temperature and residence 
times). 
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Technical Approach:

CSTR Experiments
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Knowledge Gaps and Challenges: SOx and NOx Chemistry

1. Mechanisms and kinetic parameters of consumption/generation of different NOx-

and SO2-species in the gas phase and their dissolution in water are well 

understood. 

 Kinetic mechanism for the NO- and SO- containing species in the liquid phase 

remains unclear, and some of the kinetic parameters are highly uncertain. 

2. Literature regarding influence of pH on capture effectiveness is limited and 

sometimes contradictory. Because the pH changes as the reaction occurs, it is 

difficult to predict which mechanism is dominant. 

 To date, experimental systems have not controlled or directly measured the 

experimental pH values. 

3. Difficult to experimentally measure the concentrations of certain key intermediate 

species. 

 Lack of experimental data on the concentrations of critical species makes it 

challenging to obtain accurate kinetic data for key chemical reactions in such high 

pressure, high temperature systems. 
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1. Gas inlet/liquid outlet with filter;    2. High pressure/temperature pH electrodes; 

3.   Gas outlet and pressure gauge; and 4. Mechanical stirrer 

In situ pH measurements and control under high pressure/temperature conditions

The reactor design is optimized for conducting experiments under high 

pressure and temperature and highly acidic conditions 
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Novel bench-scale experiment setup to obtain kinetic data
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Variables Conditions 

Pressure (bar) 5, 10, 15, 30

pH 0.5, 1, 2, 3, 4, 5

Temperature (oC) 25, 75, 125, 175, 225, 275, 325

NOx/SO2 ratio 0, 0.1, 0.2, 0.4, 0.8, ∞

SO2 concentration 0.09 – 0.9%

O2 gas concentration 0 – 3%

Experimental variables to be used in bench scale studies
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Expected Outcomes of Model Development

• New kinetic data on the absorption and conversion reactions 
of NO, NO2, and SO2 under high temperature and pressure 
conditions with controlled pH.

o This will be the first study to conduct experiments under well-
characterized in situ pH conditions. 

• An experimentally validated chemical mechanism 

• A simplified but reliable kinetic model with experimentally-
obtained kinetic parameters.

• Recommendations on the optimal working regime, i.e., 
reactant concentrations, temperature and pH.
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Prototype DCC Design & Testing

• Packed-bed column 
design

• Pressure up to 15 bar

• Coupled to 100kW 
pressurized 
combustion facility

• Test with both 
simulated and real 
flue gas

• Model using 
software, e.g. 
ASPEN and 
KG Tower
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Figure adapted from: M. J. Jafari, et al., Iranian J. Environ. Healt. 9(1) (2012) 20.



Milestones
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ID Budget

Period

Task

No.

Milestone

Description

Planned

Completion

Verification

Method

a 1 2.1 Purchase Bench-Scale Equip. 03/31/2016 Quarterly Report

b 1 3.1 Schematic Prototype Column Design 03/31/2016 Quarterly Report

c 1 2.2 Preliminary Bench-Scale Tests Complete 06/30/2016 Quarterly Report

d 1 3.2 Construct Prototype 09/30/2016 Quarterly Report

e 1 4.1 Performance Test w/ Simulated Flue Gas 03/31/2017 Quarterly Report

f 1 5.2 Complete Improved Model 06/30/2017 Quarterly Report

g 1 4.2 Performance Test w/ Real Flue Gas 09/30/2017 Final Report

h 1 6 Full-Scale Cost & Performance Estimate 09/30/2017 Final Report



Project Organization
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Ben Kumfer

Modeling
Gregory Yablonsky

Oleg Temkin
PhD student

Prototype 
DCC
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PhD student
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Young-Shin Jun

PhD student 
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Richard Axelbaum
Postdoc
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U.S. DOE Disclaimer

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any

agency thereof, nor any of their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof. The views and opinions of the authors

expressed herein do not necessarily state or reflect those of the United States

Government or any agency thereof.


